ELECTRONIC CONTROL ACTUATOR

" Nucom Series
ROTARY TYPE Nucom-10NS Nucom-10NM Nucom-10NL
Nucom-10NL-100
Nucom-10NL-150
Nucom-10NL-200

OPERATION MANUAL

Koei Industry Co., Ltd.

FOR YOUR SAFETY

In order for better and safety use of the product for a long period, please observe this " WARNING and CAUTION " carefully.
Here are the specification and operation manual for the product to prevent suffering injury or loss by accidents.
The contents are divided into "WARNING" and "CAUTION" for different degree of risks.
Please strictly observe them, as both of them are very important for your safety.

WARNING: Improper handling of the product disregarding the notes under this mark may cause injury or death to a man.

CAUTION: Improper handling of the product disregarding the notes under this mark may cause injury or material loss.

A. WARNING

* This product is not of explosion-proof.

Do not use it in the environment with flammable gas (gasoline etc.) or corrosive gas.

* Do not dismantle the actuator from the valve during power operation.
* Do not make wiring work when power is being supplied.

A. CAUTION

* Do not drop the product or give a shock to the product, for it may cause defects to the product.
* Do not get on the actuator, or it may cause defects or an accident.
* Do not make wiring work in the rain or in splashing water.

CONTENTS 『

1. GENERAL
2. CONFIGURATION

2-1 Configuration and names of parts
2-2 Dimensions
3. SPECIFICATION
4. OPERATION PRINCIPLE

4-1 Operation principle
4-2 Block diagram
5. INSTALLATION
6. WIRING

6-1 Cables
6-2 Water prevention
7. ASSEMBLY WITH A VALVE

7-1 Names of parts
7-2 Assembly procedures
8. POWER AND SIGNALS

8-1 Power source
8-2 Fuse and breaker
8-3 Input signals
8-4 Wiring diagram
9. CONTROL PACK (Module)

9-1 Names of parts
9-2 Direction mode
9-3 Mode selection during signal interruption
9-4 Sensitivity volume
9-5 ZERO / SPAN adjustment
10. OPERATION

10-1 Manual operation
10-2 Power operation
11. ADJUSTMENT

11-1 Potentiometer and limit switches
11-2 Mechanical stop
12. TROUBLE AND SOLUTION
13. MAINTENANCE
14. OPTIONAL EXTRAS

1.GENERAL

This is a quarter turn electronic control actuator series.
The modulated actuators are operated with $4 \sim 20 \mathrm{~mA} \mathrm{DC}$ (or $1 \sim 5 \mathrm{~V}$ DC) direct signals from a computer. The precision (control resolution) of $1 / 250$ is far higher than those of conventional pneumatic systems.

\& features

1. High control resolution of more than $1 / 250$ with the original servo control pack.
2. Compact design with worm drive and robust aluminum die cast body.
3. Easy direction mode setting (Direct or reverse).
4. Easy mode selection (open, close or stop) during signal interruption.
5. Plural protections (thermal motor protector etc.).
6. Water protection: NEMA-4X (to IP-66).

2. CONFIGURATION

2-1 Configuration and names of parts

Fio. 1

2-2 Nucom-10NS, 10NM, 10NL external drawings
<Nucom-10NS>

<Nucom-10NM>

F|G. 3
$<$ Nucom-10NL, $-100,-150,-200>$

3. FUNCTIONAL SPECIFICATION

ITEM MODEL		Nucom-10NS		Nucom-10NM	
		STD	SPECIAL	STD	SPECIAL
RATED POWER		$\begin{array}{lc} \hline \text { AC } 100 \cdot 110 \cdot 115 \cdot 120 \mathrm{~V} \pm 10 \% & (50 / 60 \mathrm{~Hz}) \\ \text { AC } 200 \cdot 220 \cdot 230 \cdot 240 \mathrm{~V} \pm 10 \% & (50 / 60 \mathrm{~Hz}) \end{array}$			
INPUT SIGNAL		$\begin{aligned} & 4 \sim 20 \mathrm{~mA} \cdot \mathrm{DC} \\ & 4 \sim 12 / 12 \sim 20 \mathrm{~mA} \cdot \mathrm{DC} \end{aligned}$		(Standard Specification) (Optional Specification)	
OUTPUT TORQUE		$\begin{gathered} 49 \mathrm{~N} \cdot \mathrm{~m} \\ (5 \mathrm{~kg} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 98 \mathrm{~N} \cdot \mathrm{~m} \\ (10 \mathrm{~kg} f \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 196 \mathrm{~N} \cdot \mathrm{~m} \\ (20 \mathrm{kgf} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 392 \mathrm{~N} \cdot \mathrm{~m} \\ (40 \mathrm{kgf} \cdot \mathrm{~m}) \end{gathered}$
OPERATION SPEED		$15 \mathrm{sec}(50 \mathrm{HZ})$	$30 \mathrm{sec}(50 \mathrm{HZ})$	$15 \sec (50 \mathrm{HZ})$	$30 \mathrm{sec}(50 \mathrm{HZ})$
		$12.5 \sec (60 \mathrm{HZ})$	$25 \mathrm{sec}(60 \mathrm{HZ})$	$12.5 \sec (60 \mathrm{HZ})$	$25 \mathrm{sec}(60 \mathrm{HZ})$
TRAVEL ANGLE		$0 \sim 90^{\circ}$			
RESOLUTION		Over 1/250			
DEAD ZONE		Max. 0.5\% F.S.			
LINEARITY		Max. 0.5% F.S.			
ACTION MODE		Direct or reverse action selectable			
MODE WHEN SIGNAL "OFF"		CLOSE/STOP/OPEN : selectable			
PROTECTION		OPEN/CLOSE limit switches OPEN/CLOSE mechanical stopper Motor thermal protector $\left(120^{\circ} \mathrm{C}\right)$			
AMBIENT TEMPERATURE		Ambient temperature within: $-25 \sim 55^{\circ} \mathrm{C}$			
RATED CURRENT	AC100V	0.65A		1.8A	
	AC110V	0.70A		2.0 A	
	AC115V	0.60 A		1.6 A	
	AC120V	0.65A		1.8A	
	AC200V	0.35A		0.9A	
	AC220V	0.40 A		1.0A	
	AC230V	0.30A		0.7A	
	AC240V	0.35A		0.9A	
MOTOR		20W Reversible		90W Reversible	
INSULATION GRADE		E Class			
RATED OPERATION TIME		Continuous			
POSITION DETECTOR		Potentiometer (Backlash revision type)			
OUTPUT SIGNAL		$4 \sim 20 \mathrm{~mA} \cdot$ DC (Standard spec. Maximum load resistance 500Ω) OPEN / CLOSE limit no-voltage output(Optional extra)			
INSULATION RESISTANCE		Between power terminal - case : $500 \mathrm{~V} \cdot \mathrm{DC} / 100 \mathrm{M} \Omega$			
WITHSTAND VOLTAGE		Between power terminal - case : $1500 \mathrm{~V} \cdot \mathrm{AC} / 1$ minute			
SERVO CONTROL UNITS		Resin molded semi-conductors			
MANUAL OPERATION		Detachable crank handle (Standard accessory)			
WIRE INLET		G1/2 $\times 2$ (Water-sealed conduit)			
ENCLOSURE PROTECTION		NEMA-4X (IP-66)			
EXPLOSION PROOF		Non explosion-proof			
MOUNTING ANGLE		360° all directions			
BODY MATERIAL		Diecast aluminum			
COATING		Munsel N-6			
WEIGHT		4.5 kg		8.7 kg	

4. OPERATION PRINCIPLE

4-1 Operation principle

The system makes computation between input signals ($4 \sim 20 \mathrm{~mA} \mathrm{DC}$) and position signals, then turns the motor in direction to balance them, and stops the motor when they are balanced.
The motor torque is transmitted through the worm structure to the actuator shaft.
Rotation direction (direct or reverse) is selectable at the setting switch.
The backlash revision type potentiometer detects and feedbacks the shaft position to the control pack.
The system always controls shaft position at the correlated rates with input signals.
< BLOCK DIAGRAM >

5.INSTALLATION

5-1 Installation
8 Cautions on indoor installation
*Avoid a hazardous place, as this is not an explosion-proof type.
*Cover whole the unit, when installing the unit in a place with water or material splashes.

* It is recommendable to reserve a space for manual maintenance work.
(depends on installation conditions.)
ZCaution on outdoor installation
* To avoid rainwater or direct sunlight, it is necessary to cover or shade whole the unit. (This concerns temperature rise in the unit, and anti-climate property of seals used.)
* It is recommendable to reserve a space for manual maintenance work. (depends on installation conditions.)

\square ACTUATOR SURFACE MATERIALS AND TREATMENT
 \square

PART	MODEL	Nucom-10NS
Nucom-10NM	Nucom-10NL	
BODY BASE	Die cast Aluminum Oxidation treatment Electrostatic coating	
DRIVE UNIT COVER	Die cast Aluminum Oxidation treatment Electrostatic coating	
ELECTRO UNIT COVER	Die cast Aluminum Oxidation treatment Electrostatic coating	
CONTROL UNIT COVER	Die cast Aluminum Oxidation treatment Electrostatic coating	
OUTPUT SHAFT	SUS 303	

5-2 AMBIENT TEMPERATURE / FLUID TEMPERATURE

Z Ambient temperature

* Ambient temperature range : $-25^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$.
* A space heater against unit-condensation is available at option.
* For application beyond the specified range, consult our Sales Dept.

Z Fluid temperature

* For high temperature fluid, that may occasionally overheat the unit, radiation type bracket and coupling are available at option.
* Standard bracket and couplings : Fluid temperature max. $65^{\circ} \mathrm{C}$
* Radiation type bracket and couplings : Fluid temperature higher than $65^{\circ} \mathrm{C}$
* For application beyond the specified range, consult our Sales Dept.

6. WIRING

6-1 Cables

Z Power cable

Use a $\Phi 9 \sim 11 \mathrm{~mm}$ (outside diameter) cable for the standard resin connector. (See FIG.6)
For customer connectors, use a proper size cable to match the connector preventing water ingress to the unit.
Z Signal cable
Use a sealed cable for signal wiring.
Do not make parallel wiring with power cable.
Note: For all connections use fork crimped-on terminals.

6-2 Water prevention
Make sufficient water prevention if vinyl tubes or conduits are used. (See FIG.7)

Note: Conduit not supplied. Seal the cable tightly preventing moisture penetration.

7. ASSEMBLY WITH A VALVE

7-1 Names of parts

The actuator is removable from a valve, so that it is very easy to replace either part in case of trouble.

FIG. 8

7-2 Assembly procedure

A: For a valve that does not have a mechanical stop on close side

A-1. Manually turn the valve and check if it is normal, and position it at full close.
(In case of a ball valve, position it at a full open.)
A-2. Bolt a bracket on the valve.
A-3. Tentatively bolt the actuator on the bracket.
A-4. Position the actuator at 0% (close), then joint the output shaft and the valve stem with a coupling.
A-5. Secure the bolts.
A-6. Manually check that the actuator turns smoothly without eccentricity.
The assembly is over. For disassembly, work to the contrary.
B : For a valve that has a mechanical stop on close side
B-1. Check that the valve movement is normal, then position it at full close.
Be sure that the position is just inside the valve stop.

B-2. Position the actuator at 0% (full close), and set the actuator limit switch so as to work at 0%.
(Note that the limit switch should normally be set to work at a half turn of manual handle past the full close of signal rate.) (See FIG.9)
B-3. Bolt a bracket on the valve.
B-4. Tentatively bolt the actuator on the bracket.
B-5. Position the actuator at 0% (close), then joint the actuator shaft and the valve stem with a coupling.
B-6. Secure the bolts.
B-7. Manually check that the actuator turns smoothly without eccentricity etc.
Confirm that the limit switch works at 0% before the shaft touches at the stop.
(If the shaft touches at the valve stop before the limit switch would function, the actuator may be locked, and may overheat.
In such a case, the thermo protector will stop the motor, but the case may cause damages to the unit.)

8. POWER AND SIGNALS

8-1 Supply voltages

Standard	AC $110,115,120,220,230,240 \mathrm{~V} \pm 10 \%(50 / 60 \mathrm{~Hz})$
Option	AC 24 V, DC $24 \mathrm{~V} \pm 10 \%(50 / 60 \mathrm{~Hz})$

For other voltages than the above, refer to our Sales Dept.

8-2 Fuse and breaker

Recommendable fuse/breaker capacities

Model	Capacity of fuse/breaker	Motor capacity
Nucom-10NS	5 A	20 W
Nucom-10NM	7 A	90 W
Nucom-10NL	10 A	100 W

8-3 Input signals

Standard	$4 \sim 20 \mathrm{~mA}($ or	$1 \sim 5 \mathrm{~V})$
	$4 \sim 12 \mathrm{~mA}($ or	$1 \sim 3 \mathrm{~V})$

For other signal rates, please refer to our Sales Dept.

8-4 Wiring diagram

$\boldsymbol{\Delta}$	CAUTION	ON	USE

9. CONTROL PACK

9-1 Names of parts

(Note) The packs with green labels or with Serial No, "SP0000" marked on the side are fitted with an exterior type 250Ω resister, and no need to be connected.
Take special care when wiring actuator. AC connectors are in the middle of terminal strip.

9-2 Direction mode

Either direct or reverse action is selectable at this switch.

9-3 Selection of a mode during signal interruption
A mode among open/stop/close is selectable at this switch in case of signal interruption.

Select switch $1=$ Open action
Select switch $2=$ Stop action
Select switch $3=$ Close action

Setting of direction (DA/RA) and mode in signal interruption are available in 6 combinations as shown in FIG. 14. (Note) The actuators are normally set in the following combination unless otherwise instructed.

Direction	Reverse (RA mode)
In case of signal interruption	STOP mode

FIG. 14

* For US users

Our "Direct Action"	$=$	US "Reverse Action"
Our "Reverse Action"	$=$	US "Direct Action"

(Note) When input signal rates drop below 0.2 mA , the actuator will recognize as "signal interrupted ", and will automatically act according to the mode as preset.
To prevent such undesired action, input signals should be exactly adjusted.
9-4 Sensitivity volume

9-5 ZERO/SPAN Setting

FIG. 16

> * ZERO volume CW = To increase (to OPEN direction)
> Adjustable range $\quad-25 \sim+25 \%$

* SPAN volume

CW = To increase (to OPEN direction)
Adjustable range - $50 \sim+200 \%$
*Zero/Span volumes are appropriately adjusted before shipment.
Do not adjust it after shipment unless imperatively required.
For adjustment, use a trimmer driver of less than $300 \mathrm{~g} / \mathrm{cm}$ torque, for an excessive force may cause a trouble.
*First adjust Zero, then adjust Span based on the Zero rate.

10. OPERATION

10-1 Manual operation

〈SIZE(mm)〉	10NS	10 NM	10 NL
Al len Key SIZE	5	6	10
No. of handle turns	15	15	15
Length of handle	100	120	350

FIG. 17

Manual operation procedures

1. Remove the rubber cap from the actuator.
2. Insert the attached handle lever into the hexagonal hole.
3. Turn the handle CW for close, CCW for open.

It is 15 turns between full close to full open.

* Do not turn the handle beyond the Valve position indicator's "OPEN", "CLOSE" gauges, or the shaft will touch at the stop.
Excessive force may cause a defect.

A CAUTION

When making manual operation, be sure that power is off. If power is on while manual operation, the handle will suddenly return!

Confirm that power is OFF before making power operation
10-2 Power operation

1. Before starting power operation, check the following if they are appropriate.

* Installation conditions
* Ambient temperature and fluid temperature
* Engagement with valve
* Positions at full close and full open
* Wiring
* Water prevention at conduit tube
* Voltage and input signals (check against specification sheet)

2. Supply power and signals.
3. Check the actuator action with input signals ($4 \sim 20 \mathrm{~mA} /$ Reverse action)

4 mA	20 mA	12 mA
Full close	Full open	50% opening

4. Stop the actuator at an optional signal position, and you may check the control resolution referring to the following example.
[Example]
In case of $4 \sim 20 \mathrm{~mA}$:

Resolution	Minimum change in input signals
$1 / 250$	0.064 mA
$1 / 200$	0.08 mA

The resolution is normally preset at $1 / 250$ before shipment. If necessary to change, adjust it by sensitivity volume (See 9-4).
When raising the sensitivity volume, it is occasional that noises on signals may actuate the unit, if they are not strictly eliminated.

After the checking is over, start operation.

11. ADJUSTMENT

11-1 Potentiometer and limit switches

1. Position the Valve position indicator at 50% manually, and the shaft will come to the position as shown in FIG.19. (See that the shaft is parallel with the actuator bottom)
2. Connect the adjuster. (FIG.20) :
3. CN1 with control pack, CN2 with actuator
4. Shift the adjuster switch to "ADJ".
5. Supply power and signals to control pack.
6. Unscrew and loosen the sleeve.
7. Set the input signal at 12 mA , then turn and fix the sleeve at the position where both the adjuster 2 lamps go off.
8. Shift the adjuster to "ACTION". If the input signal position is not matching with the potentiometer (as either adjuster lamp is on), the shaft will self-turn to revise the gap.
9. If the gap is very slight, revise it with ZERO VR at the control pack.
10. Fix the valve position indicator at 50% position.
11. Set the input signals at 4 mA and 20 mA , and confirm that the respective shaft positions are matching to the Valve position indicator.
12. Now the potentiometer adjustment is over.

Adjust the limit switches (OP/CL) as follows :
Loosen the limit cams and adjust the limit switches (Upper $=C L$, Lower $=O P$), so as to function at a half turn of manual handle past 4 mA and 20 mA points, respectively.
*Ascertain that the mechanical stops will function only at a half turn of manual handle past the limit switches functional points.

11-2 Mechanical stop

1. Referring to Fig.21, adjust the mechanical stops with the stops' bolts and nuts as follows.

Set the limit switches functional points at a half turn with handle past input signal OP/CL positions. Set the mechanical stop positions at a half turn with handle past limit switches functional points.
2. Adjusting procedure

Loosen the locknuts allowing the stop bolts to turn.
Fix the stop bolts as shown in FIG.21, and secure them with locknuts.

* If the mechanical stops are adjusted to function before limit switches OP/CL positions, the actuator may possibly be locked during power operation, causing overheat and stall by the motor thermal protector.

F|O. 21

TROUBLE AND PROBABLE CAUSE	SOLUTION
Motor does not start up	
Power failed or dropped	Check and supply power
Signal failed or dropped	Check and input signals
Wire broken or disconnected	Change the wire or re-connect the terminal duty rate ambient temperature or decrease Eliminate overload at valve
Limit switches functioned at an intermediate position	Re-adjust the limit cam
Motor advancer defective	Change advancer (condenser)
Control pack defective	Change control pack
Aperture unfixable (Hunting)	Check input signal
Noise on signal line	Change potentiometer
Noise on potentiometer	Check the fixing screws
Potentiometer and opening gear loose	
Aperture does not match input signal	Check the input signals
A wrong signal input	Re-adjust ZERO/SPAN
Improper adjustment of ZERO/SPAN	Check the wiring connection
Potentiometer slipped	
Aperture signal does not output	

* For other situation of troubles than the above, please refer to our Sales Dept.

13. MAINTENANCE AND INSPECTION

Refer to separate "Maintenance Manual".

14. OPTIONAL EXTRAS

[^0]
[^0]: * Non-standard voltages
 * Split range signals
 * OP/CL output contact (= extra limit switches)
 * Torque limiter
 * Space heater
 * Potentiometer
 * R/I converter

